SPbU SPbU
  • For Partners
  • Job Opportunities at SPbU
  • Contacts
  • Library
  • RU
  • 中文
  • About SPbU
    • The University Board of Trustees
    • History
    • Administration
    • International Cooperation
    • The University in Persons
    • Museums and Collections
    • Green Campus
    • About St Petersburg
    • Pirogov Clinic
    • Academic and Research Departments
    • University Giftshop
    • For Alumni
    • By-laws and Regulations
    University Introduction
  • Admission
    • Educational Programmes
    • Admissions Procedure
    • Documents Required
    • Independent Aspirantura Studies
    • International Admissions Office
    • Preparatory Course
    • Recognition of Foreign Educational Credentials
    • Tuition
    • Visa Support
    How to Apply
  • Education
    • Student Life
    • Internship
    • Accessible Environment
    • Accommodation
    • Clinics
    • Courses Taught in Foreign Languages
    • Heads of the Academic Offices
    • Online Courses
    • Scholarships and Grants
    • Services
    • Useful Information for International Students
    • Students Exchange Programmes (SEP)
    • Career Centre
    • International Student Club
    • Medical Services
    Russian Education System
  • Research
    • Research Park
    • M. Gorky Scientific Library of SPbU
    • Funding Opportunities
    • Research Internship Programme
    • Research Repository
    • Council of Young Scientists
    • Journals at SPbU
    • University Spin-offs
    • Intellectual Property
    • Visiting Professors
    • Pure System
    Resources Overview
  • News and Events
News
  • News
  • Calendar
  • Student Reviews
  • University: A Fresh Start
  • Rector's Interviews
  • University in Media
News and Events News
25 October 2021 News

Chemists at St Petersburg University discover a compound with a laser-induced ‘switching’ of biological activity

Scientists at St Petersburg University together with researchers from St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS) and the Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences have developed a new organic compound demonstrating a laser-induced enhancement in its biological activity.

The discovered phosphonate will enable the scientists to affect human body cells with increased precision and safety. The research findings are published in the New J. Chem., 2021, 45, 15195-15199 issued by the Royal Society of Chemistry.

The controlled effect of agents on the human body is closely examined in photopharmacology – an area in pharmaceutical science studying agents that change their activity when exposed to light. The chemists at St Petersburg University have developed a new phosphonate that can ‘switch’ on demand under exposure to light increasing its biological activity when, for example, the agent reaches the inflamed area. 

As a rule, photopharmacological agents consist of two components - drugs and a photoactive switch. However, the scientists have discovered a compound that can perform both functions simultaneously – phosphorylated arylaminomalonates. Under exposure to laser, a part of the molecule (phosphonate group) literally turns. This changes the form and composition of the whole molecule in space enhancing its biological properties.

The resulting substance can be applied in ophthalmology, neurodegenerative disease (for example, Alzheimer disease) and other medical spheres. This is because synthesised phosphonate is an inhibitor of cholinesterase – an important ferment of the nervous and other systems of a human body. Already today some publications explain how cholinesterase levelling takes part in the treatment of skin disorders. A drug can be applied to the skin and exposed to light that will ‘switch it on’ or ‘switch it off’.

Previously, the research team of the scientists from St Petersburg University, St. Petersburg Federal Research Centre of the Russian Academy of Sciences (SPC RAS) and the Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences developed an agent that decreases its biological activity under exposure to light. A new phosphonate has a reverse effect. A directed laser beam with the wavelength of 266 or 325 nanometres changes the absorption spectrum and enhances the agent biological activity.

Alina Manshina is the author of the study, Doctor of Chemistry, Professor in the Department of Laser Chemistry and Laser Materials Science. She said that although the developed agents refer to one group, they react to light exposure in a different way: one of them ‘switches on’, while the other ‘switches off’. In future, scientists might be able to use these compounds simultaneously and control the option of ‘switching on and off’. However, this requires additional research. 

‘Our main achievement is that we have discovered this reaction of phosphonates to light emission. Changes in phosphonate properties under exposure to a light beam have not been studied before. It is important that the developed agents do not just react to light, but change their form under exposure to laser significantly modifying their biological activity. This property has been found virtually by accident, which often happens in scientific research. However, we have managed to test it experimentally and describe,’ Alina Manshina commented on the research. 

Moreover, the scientists have noticed that the biological properties of phosphonates are also affected by substitute agents within the compound. The resulting substance structure has the so-called phenyl ring capable of taking various elements including fluorine, bromine, chlorine, hydrogen or methyl group СН3. Thus, one and the same agent – phosphonate – will ultimately acquire various biological properties, since molecules with different substitutes react to laser emission in a different way.

Some substances enhance their biological activity only slightly, while others – up to 90-95%. This is a significant increase indicating the impact of the substitute agent within the molecular structure. Thus, biological activity increases upon exposure in the PhAM-F> PhAM-Cl> PhAM-Br series. The largest increase in the inhibiting property is observed in a fluorine substituted phosphonate (by 6.5 times). 

‘Potentially, it can be applied in developing personalised medical solutions that take into account individual characteristics of the person choosing optimal dose and exposure,’ clarified Alina Manshina.

In future, the researchers want to examine in more detail how the developed chemical agents affect the human body and if they are capable of damaging tissue cells. A cytotoxicity examination will allow for a more detail understanding of the application areas and start clinical trials followed by real life practice. 

‘We clearly understand that the way from an agent synthesised in a test-tube and test results to the production and launch of a specific drug is very long. However, we are interested in finding the key element that determines if the agent reacts to light exposure or if this phosphonate is non-sensitive to laser. Our new research will be focused on finding answers to these questions,’ said Alina Manshina.  

Experimental research of light exposure impact on the phosphonate biological properties was performed in the Centre for Optical and Laser Materials Research of the Research Park at St Petersburg University.

The work on the part of the St. Petersburg Federal Research Center of the Russian Academy of Sciences was performed under the federal order of the Ministry of Education and Science of the Russian Federation for 2019-2021 (No АААА-А19-119020190099-1) with the support of the Centre for scientific excellence ‘Photonics Centre’ funded by the Ministry of Science and Higher Education of the Russian Federation (Contract No 075-15-2020-906).

Latest News

Scientists from St Petersburg University develop neural network to assess carbon concentration in seas and oceans

St Petersburg University and Gazprom Neft launch master’s programme to train a new generation of engineers

St Petersburg University launches new scientific media project The Boson of Meaning

# research # sustainable development goals: good health and well-being

Other news

111

1 June, 2025 Play

Scientists from St Petersburg University develop neural network to assess carbon concentration in seas and oceans

30 May 2025 News

St Petersburg University and Gazprom Neft launch master’s programme to train a new generation of engineers

30 May 2025 News

Principles of Rational Nutrition in Modern Society. Trends, Developments, and Challenges

3 June Online lecture

Prep year grind: how an Iranian student earned her spot in St Petersburg University

12 May 2025 Student Reviews
"Peterburgskii Dnevnik" newspaper:

Nikolay Kropachev: "Churches at universities are becoming centres of spiritual life"

3 April 2025 Rector's Interviews
  • For Applicants
  • International Admissions Office
  • History of SPbU
  • Museums and Collections
  • Personal Account
  • Additional Programmes
  • Educational Programmes
  • Preparatory Course
  • Russian Language Programmes
  • For Partners
  • Clinics
  • Distributed Ledger Technologies Center of SPbU
  • Event Initiation
  • Language Testing Centre
  • Research Park
  • Multifunctional Payment Assistant
  • The Mediation Centre
  • University giftshop
  • For Students
  • Library
  • Accessible Environment
  • Blackboard
  • Timetable
  • Student's Personal Account
  • Accommodation
  • Internships
  • Students exchange programme and Freemover programme
  • Useful Information For International Students
© St Petersburg University, 2025
7-9 Universitetskaya Embankment, St Petersburg, Russia, 199034
By-laws and Regulations Contacts

This information resource may contain archival materials mentioning individuals or legal entities included in the register of foreign agents by the Ministry of Justice of the Russian Federation, as well as organizations recognized as extremist and banned on the territory of the Russian Federation.

Educational Programmes Russian Language Programmes Preparatory Course
International Admissions Office Contacts